Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring

Interactions of T cell receptors (TCR) to peptides in complex with MHC (p:MHC) are key features that mediate cellular immune responses. While MHC binding is required for a peptide to be presented to T cells, not all MHC binders are immunogenic. The interaction of a TCR to the p:MHC complex holds a key, but currently poorly comprehended, component for our understanding of this variation in the immunogenicity of MHC binding peptides. Here, we demonstrate that identification of the cognate target of a TCR from a set of p:MHC complexes to a high degree is achievable using simple force-field energy terms. Building a benchmark of TCR:p:MHC complexes where epitopes and non-epitopes are modelled using state-of-the-art molecular modelling tools, scoring p:MHC to a given TCR using force-fields, optimized in a cross-validation setup to evaluate TCR inter atomic interactions involved with each p:MHC, we demonstrate that this approach can successfully be used to distinguish between epitopes and non-epitopes. A detailed analysis of the performance of this force-field-based approach demonstrate that its predictive performance depend on the ability to both accurately predict the binding of the peptide to the MHC and model the TCR:p:MHC complex structure. In summary, we conclude that it is possible to identify the TCR cognate target among different candidate peptides by using a force-field based model, and believe this works could lay the foundation for future work within prediction of TCR:p:MHC interactions.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, Universidad Nacional de San Martin
Contributors: Lanzarotti, E., Marcatili, P., Nielsen, M.
Number of pages: 7
Pages: 91-97
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Molecular Immunology
Volume: 94
ISSN (Print): 0161-5890
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.16 SJR 1.352 SNIP 0.941
Web of Science (2017): Impact factor 3.188
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.2 SJR 1.572 SNIP 0.962
Web of Science (2016): Impact factor 3.236
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.16 SJR 1.576 SNIP 0.93
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.89 SJR 1.484 SNIP 0.922
Web of Science (2014): Impact factor 2.973
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.89 SJR 1.474 SNIP 0.934
Web of Science (2013): Impact factor 3.003
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.94 SJR 1.43 SNIP 0.858
Web of Science (2012): Impact factor 2.645
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes