Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection

Background: The molecular signature of atopic dermatitis (AD) lesions is associated with T(H)2 and T(H)22 activation and epidermal alterations. However, the epidermal and dermal AD transcriptomes and their respective contributions to abnormalities in respective immune and barrier phenotypes are unknown. **Objective:** We sought to establish the genomic profile of the epidermal and dermal compartments of lesional and nonlesional AD skin compared with normal skin.

Methods: Laser capture microdissection was performed to separate the epidermis and dermis of lesional and nonlesional skin from patients with AD and normal skin from healthy volunteers, followed by gene expression (microarrays and real-time PCR) and immunostaining studies.

Results: Our study identified novel immune and barrier genes, including the IL-34 cytokine and claudins 4 and 8, and showed increased detection of key AD genes usually undetectable on arrays (ie, IL22, thymic stromal lymphopoietin [TSLP], CCL22, and CCL26). Overall, the combined epidermal and dermal transcriptomes enlarged the AD transcriptome, adding 674 upregulated and 405 downregulated differentially expressed genes between lesional and nonlesional skin to the AD transcriptome. We were also able to localize individual transcripts as primarily epidermal (defensin, beta 4A [DEFB4A]) or dermal (IL22, cytotoxic T-lymphocyte antigen 4 [CTLA4], and CCR7) and link their expressions to possible cellular sources. Conclusions: This is the first report that establishes robust epidermal and dermal genomic signatures of lesional and nonlesional AD skin and normal skin compared with whole tissues. These data establish the utility of laser capture microdissection to separate different compartments and cellular subsets in patients with AD, allowing localization of key barrier or immune molecules and enabling detection of gene products usually not detected on arrays.
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.94 SJR 4.819 SNIP 2.847
Web of Science (2012): Impact factor 12.047
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 6.8 SJR 5.161 SNIP 2.717
Web of Science (2011): Impact factor 11.003
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 4.061 SNIP 2.352
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.915 SNIP 2.48
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 4.146 SNIP 2.388
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.682 SNIP 2.554
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.53 SNIP 2.628
Scopus rating (2005): SJR 3.018 SNIP 2.439
Scopus rating (2004): SJR 2.971 SNIP 2.43
Scopus rating (2003): SJR 2.678 SNIP 2.307
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.419 SNIP 1.987
Scopus rating (2001): SJR 2.024 SNIP 1.869
Scopus rating (2000): SJR 1.404 SNIP 1.742
Scopus rating (1999): SJR 1.487 SNIP 1.663
Original language: English
Keywords: Atopic dermatitis, Laser capture microdissection, IL-34, Claudins 8 and 4, Immune, Barrier
DOIs: 10.1016/j.jaci.2014.10.037
Source: FindIt
Source-ID: 273937490
Research output: Research - peer-review > Journal article – Annual report year: 2015