Identification and characterization of a kunzeaol synthase from Thapsia garganica - DTU Orbit (17/01/2019)

Identification and characterization of a kunzeaol synthase from *Thapsia garganica*: implications for the biosynthesis of the pharmaceutical thapsigargin

Thapsigargin is a major terpenoid constituent of *Thapsia garganica* root. Owing to its potent antagonistic effect on the sarcoplasmic/endoplasmic reticulum Ca$^{2+}$-ATPase, thapsigargin has been widely used to study Ca$^{2+}$ signalling and is also a potential drug for prostate cancer. Despite its importance, thapsigargin biosynthesis in *T. garganica* remains unknown. In order to decipher thapsigargin biosynthesis, deep transcript sequencing (454 and Illumina) of the *T. garganica* root was performed, and two terpene synthases (TgTPS1/2) were identified. Functional characterization of their encoded enzymes in a metabolically engineered yeast revealed that TgTPS1 synthesized delta-cadinene, whereas TgTPS2 produced ten distinct terpenoids. However, cultivation of the TgTPS2-expressing yeast in pH-maintained conditions (pH 6-7) yielded one major oxygenated sesquiterpenoid, suggesting that formation of multiple terpenoids was caused by acidity. The major terpene product from TgTPS2 was identified as 6β-hydroxygermacra-1(10),4-diene (kunzeaol) by mass-fragmentation pattern, retention index, the nature of its acid-induced degradation and NMR. Also, recombinant TgTPS2 efficiently catalysed the synthesis of kunzeaol *in vitro* from farnesyl diphosphate with a K_m of 2.6 μM and a k_{cat} of 0.03 s$^{-1}$. The present paper is the first report of a kunzeaol synthase, and a mechanism for the transformation of kunzeaol into the thapsigargin backbone is proposed.

General information

State: Published
Organisations: University of Calgary, University of Copenhagen
Contributors: Pickel, B., Drew, D. P., Manczak, T., Weitzel, C., Simonsen, H. T., Ro, D.
Number of pages: 11
Pages: 261-271
Publication date: 2012
Peer-reviewed: Yes

Publication information

Journal: Biochemical Journal
Volume: 448
Issue number: Part 2
ISSN (Print): 0264-6021
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.62 SJR 2.224 SNIP 0.953
Web of Science (2017): Impact factor 3.857
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.63 SJR 2.402 SNIP 0.981
Web of Science (2016): Impact factor 3.797
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.85 SJR 2.572 SNIP 1.12
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.25 SJR 2.881 SNIP 1.206
Web of Science (2014): Impact factor 4.396
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.99 SJR 3.098 SNIP 1.345
Web of Science (2013): Impact factor 4.779
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.01 SJR 3.122 SNIP 1.409
Web of Science (2012): Impact factor 4.654
ISI indexed (2012): ISI indexed yes