A comparison of the Nordtest and Japanese test methods for the moisture buffering performance of building materials - DTU Orbit (30/12/2018)

Two test methods, one worked out in a Nordtest project and the other available as a Japanese Industrial Standard, both developed to characterize building materials with respect to moisture buffering performance, are analyzed in detail by a numerical study on four different materials. Both test methods are based on a similar kind of dynamic loading, but the specifications of each test protocol vary. Therefore, the sensitivity of the test protocols is investigated by varying different protocol parameters. Subsequently, the practical applicability of the obtained values is investigated by confronting the values obtained for the four materials with the dynamic response of a small room with each of the materials used in turns as finishing material. Finally, the results determined according to the dynamic test protocol are compared with values calculated from steady-state material data.

General information
State: Published
Organisations: Section for Building Physics and Services, Department of Civil Engineering
Contributors: Roels, S., Janssen, H.
Pages: 137-161
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Journal of Building Physics
Volume: 30
Issue number: 2
ISSN (Print): 1744-2591
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.53 SJR 0.786 SNIP 1.317
Web of Science (2017): Impact factor 1.226
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.1 SJR 0.738 SNIP 0.808
Web of Science (2016): Impact factor 1.204
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.4 SJR 0.952 SNIP 1.767
Web of Science (2015): Impact factor 1
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.62 SJR 1.033 SNIP 1.358
Web of Science (2014): Impact factor 1.318
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.17 SJR 0.659 SNIP 1.05
Web of Science (2013): Impact factor 1.027
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.56 SJR 0.814 SNIP 1.575
Web of Science (2012): Impact factor 1.419
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.84 SJR 0.463 SNIP 1.279
Web of Science (2011): Impact factor 0.714
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.629 SNIP 1.219