Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2013

View graph of relations

Airborne nanoparticles can cause severe harm when inhaled. Therefore, small and cheap portable airborne nanoparticle monitors are highly demanded by authorities and the nanoparticle producing industry. We propose to use nanomechanical resonators to build the next generation cheap and portable airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles on a nanomechanical sensor operating directly in air. We measured a sampling rate of over 1000 particles per second, for 28 nm silica nanoparticles with a concentration of 380000 #/cm3, collected on a 500 nm wide nanomechanical string resonator. We show that it is possible to reach a saturated sampling regime in which 100% of all nanoparticles are captured that are owing in the projection of the nanostring. We further show that it is possible to detect single airborne nanoparticles by detecting 50 nm Au particles with a 250 nm wide string resonator. Our resonators are currently operating in the first bending mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer.
Original languageEnglish
Title of host publicationProceedings of SPIE
Volume8725
PublisherSPIE - International Society for Optical Engineering
Publication date2013
Pages 872525
DOIs
StatePublished - 2013
EventMicro- and Nanotechnology Sensors, Systems, and Applications V - Baltimore, Maryland, United States

Conference

ConferenceMicro- and Nanotechnology Sensors, Systems, and Applications V
LocationBaltimore Convention Center
CountryUnited States
CityBaltimore, Maryland
Period29/04/201303/05/2013
CitationsWeb of Science® Times Cited: 2
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 56155773