Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension - DTU Orbit (29/12/2018)

Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains <63 μm) was investigated, and application of the acids as enhancing reagents during electrodialytic remediation (EDR) of Pb-contaminated soil fines in suspension was tested. Five of the acids showed the ability to extract Pb from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR with nitric acid gave promising results.

General information
State: Published
Organisations: Section for Geotechnics and Geology, Department of Civil Engineering, Bioscience and Technology, Department of Systems Biology, Section for Construction Materials
Contributors: Jensen, P. E., Ahring, B. K., Ottosen, L. M.
Pages: 920-928
Publication date: 2007
Peer-reviewed: Yes

Publication information
Journal: Journal of Chemical Technology and Biotechnology
Volume: 82
Issue number: 10
ISSN (Print): 0268-2575
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.73 SJR 0.766 SNIP 0.933
Web of Science (2017): Impact factor 2.587
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.94 SJR 0.854 SNIP 1.132
Web of Science (2016): Impact factor 3.135
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.55 SJR 0.795 SNIP 0.952
Web of Science (2015): Impact factor 2.738
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.49 SJR 0.938 SNIP 1.023
Web of Science (2014): Impact factor 2.349
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.82 SJR 1.028 SNIP 1.191
Web of Science (2013): Impact factor 2.494
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.58 SJR 1.108 SNIP 1.161
Web of Science (2012): Impact factor 2.504
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.28 SJR 0.981 SNIP 0.96
Web of Science (2011): Impact factor 2.168
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.892 SNIP 0.905
Web of Science (2010): Impact factor 1.818
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.842 SNIP 0.948
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.808 SNIP 1.022
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.639 SNIP 0.845
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.674 SNIP 0.912
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.599 SNIP 0.941
Scopus rating (2004): SJR 0.645 SNIP 0.77
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.556 SNIP 1.104
Scopus rating (2002): SJR 0.686 SNIP 1.091
Scopus rating (2001): SJR 0.637 SNIP 0.983
Scopus rating (2000): SJR 0.639 SNIP 1.03
Scopus rating (1999): SJR 0.637 SNIP 1.075
Original language: English
Keywords: organic acid, electrokinetic, heterotrophic leaching, electrodialysis, soil washing, remediation
Electronic versions:
Postprint.pdf
DOIs:
10.1002/jctb.1762
Source: orbit
Source-ID: 213703
Research output: Research - peer-review › Journal article – Annual report year: 2007