Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism

A two-dimensional classical spin model of nuclear antiferromagnetism is studied by Monte Carlo computer simulation techniques as well as by mean-field calculations. The model includes nearest-neighbor dipolar and exchange interactions and a single-ion term. The phase boundary of the antiferromagnetic phase in the external-field–temperature plane exhibits sections of both first- and second-order transitions separated by a tricritical point. Particular attention is paid to the isentropes of the phase diagram, which correspond to the thermodynamic paths of constant entropy followed in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following constant-temperature or constant-magnetic-field quenches into the antiferromagnetic phase is found at late times to obey the classical Allen-Cahn growth law. The qualitative features of isentropic quenches and the nonequilibrium ordering phenomena during controlled heating treatments at constant rate are discussed in relation to recent experimental observations from neutron scattering experiments on nuclear antiferromagnetism in Cu.
Scopus rating (2010): SJR 3.318 SNIP 1.447
Web of Science (2010): Impact factor 3.774
Web of Science (2010): Indexed yes
Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 2.923 SNIP 1.516
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.892 SNIP 1.588
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.62 SNIP 1.468
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.126 SNIP 1.156
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.012 SNIP 1.103
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.184 SNIP 1.179
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.856 SNIP 1.841
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 3.132 SNIP 1.727
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.84 SNIP 1.603
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.789 SNIP 1.541
Original language: English
Electronic versions:
Lindgaard.pdf
DOIs:
10.1103/PhysRevB.38.6798
URLs:

Bibliographical note
Copyright (1988) by the American Physical Society.
Source: orbit
Source-ID: 250748
Research output: Research - peer-review › Journal article – Annual report year: 1988