On the electrical breakdown of gaseous dielectrics-an engineering approach

Following an examination of the basic gas-discharge concepts, the Townsend breakdown criterion is derived for nonuniform fields and a reformulation of the streamer criterion is undertaken. A direct application of the Townsend criterion to a practical situation is hardly possible, whereas the streamer criterion leads to applicable criteria for the onset of breakdown in air as well as in strongly electronegative gases. In this approach, a knowledge of the relevant ionization coefficients is not required, because these are replaced by parameters obtained from uniform-field Paschen curve data. In addition, the criteria developed do not contain any arbitrary constants. By introducing the electrode surface mean curvature, it is shown that the calculation of breakdown data for widely different electrode shapes can be addressed through a single formula. It is emphasized that the inherent roughness of practical electrode surface demands that caution be exercised in all design criteria.

General information
State: Published
Organisations: Department of Applied Electronics
Contributors: Pedersen, A.
Pages: 721-739
Publication date: 1989
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Electrical Insulation
Volume: 24
Issue number: 5
ISSN (Print): 0018-9367
Ratings:
BFI (2008): BFI-level 1
Original language: English
Electronic versions:
Pedersen.pdf
DOIs:
10.1109/14.42156

Bibliographical note
Copyright: 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
Source: orbit
Source-ID: 251503
Research output: Research - peer-review › Journal article – Annual report year: 1989