Phase diagrams for surface alloys

We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign of the heat of segregation from the bulk and the sign of the excess interactions between the atoms in the surface (the surface mixing energy). We also consider the more complicated cases with ordered surface phases, nonpseudomorphic overlayers, second layer segregation, and multilayers. The discussion is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss in detail the cases Ag/Cu(100), Pt/Cu(111), Ag/Pt(111), Co/Cu(111), Fe/Cu(111), and Pd/Cu(110) in connection with available experimental results.

General information
State: Published
Organisations: Department of Physics, Theoretical Atomic-scale Physics
Contributors: Christensen, A., Ruban, A., Stoltze, P., Jacobsen, K. W., Skriver, H. L., Nørskov, J. K., Besenbacher, F.
Pages: 5822-5834
Publication date: 1997
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 56
Issue number: 10
ISSN (Print): 2469-9950
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
 Web of Science (2017): Impact factor 3.813
 Web of Science (2017): Indexed yes
 Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
 Web of Science (2016): Impact factor 3.836
 Web of Science (2016): Indexed yes
 Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
 Web of Science (2015): Impact factor 3.718
 Web of Science (2015): Indexed yes
 Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
 Web of Science (2014): Impact factor 3.736
 Web of Science (2014): Indexed yes
 Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
 Web of Science (2013): Impact factor 3.664
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
 Web of Science (2012): Impact factor 3.767
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
 Web of Science (2011): Impact factor 3.691
 ISI indexed (2011): ISI indexed yes
 Web of Science (2011): Indexed yes
 Scopus rating (2010): SJR 3.318 SNIP 1.447
 Web of Science (2010): Impact factor 3.774
 Web of Science (2010): Indexed yes
 Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 2.923 SNIP 1.516
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.892 SNIP 1.588
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.62 SNIP 1.468
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.126 SNIP 1.156
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.012 SNIP 1.103
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.184 SNIP 1.179
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.856 SNIP 1.841
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 3.132 SNIP 1.727
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.84 SNIP 1.603
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.789 SNIP 1.541
Original language: English
Keywords: ELECTRONIC-STRUCTURE, METAL-METAL INTERFACES, THIN-FILMS, CU-NI, INITIAL GROWTH, IMMISCIBLE METALS, AU, SEGREGATION, CU(100), SCANNING-TUNNELING-MICROSCOPY
Electronic versions:
Ruban.pdf
URLs:

Bibliographical note
Copyright (1997) by the American Physical Society.
Source: orbit
Source-ID: 168182
Research output: Research - peer-review › Journal article – Annual report year: 1997