An automated approach for annual layer counting in ice cores

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

View graph of relations

A novel method for automated annual layer counting in seasonally-resolved paleoclimate records has been developed. It relies on algorithms from the statistical framework of hidden Markov models (HMMs), which originally was developed for use in machine speech recognition. The strength of the layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on statistical criteria for annual layer identification. The most likely positions of multiple layer boundaries in a section of ice core data are determined simultaneously, and a probabilistic uncertainty estimate of the resulting layer count is provided, ensuring an objective treatment of ambiguous layers in the data. Furthermore, multiple data series can be incorporated and used simultaneously. In this study, the automated layer counting algorithm has been applied to two ice core records from Greenland: one displaying a distinct annual signal and one which is more challenging. The algorithm shows high skill in reproducing the results from manual layer counts, and the resulting timescale compares well to absolute-dated volcanic marker horizons where these exist.
Original languageEnglish
JournalClimate of the Past Discussions
Volume8
Issue number6
Pages (from-to)1881-1895
ISSN1814-9340
DOIs
StatePublished - 2012

Bibliographical note

This work is distributed under the Creative Commons Attribution 3.0 License.

CitationsWeb of Science® Times Cited: 12
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 51593188