Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study (16/01/2019)

Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

We calculate the intershell resistance R_{21} in a multiwall carbon nanotube as a function of temperature T and Fermi level ϵ_F (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I_1 in one shell induces a voltage drop V_2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark results for $R_{21} = V_2/I_1$ within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality-dependent suppression effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R_{21} and even the sign of R_{21} can change depending on the chirality of the inner and outer tube and misalignment of inner and outer tube Fermi levels. However for any tube combination, we predict a dip (or peak) in R_{21} as a function of gate voltage, since R_{21} vanishes at the electron-hole symmetry point. As a by-product, we classified all metallic tubes into either zigzaglike or armchairlike, which have two different nonzero crystal angular momenta $m(a), M(b)$ and only zero angular momentum, respectively.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, University of Copenhagen
Contributors: Lunde, A. M., Flensborg, K., Jauho, A.
Pages: 125408
Publication date: 2005
Peer-reviewed: Yes

Publication information
Journal: Physical Review B Condensed Matter
Volume: 71
Issue number: 12
ISSN (Print): 0163-1829
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes