Closing the gap? Top-down versus bottom-up projections of China's regional energy use and CO2 emissions - DTU Orbit (01/01/2019)

As the world's largest CO2 emitter, China is a prominent case study for scenario analysis. This study uses two newly developed global top-down and bottom-up models with a regional China focus to compare China's future energy and CO2 emission pathways toward 2050. By harmonizing the economic and demographic trends as well as a carbon tax pathway, we explore how both models respond to these identical exogenous inputs. Then a soft-linking methodology is applied to "narrow the gap" between the results computed by these models. We find for example that without soft-linking, China's baseline CO2 emissions might range from 15-20Gt in 2050, while soft-linking models results in 17Gt. Reasons for the results gap between the models are discussed subsequently, such as model structure and statistical inputs. At a sectoral level, the gap can be mainly traced to China's future coal use in electricity production. The study finds that it is beneficial to soft-link complex global models under harmonized assumptions. Although this study fails to "close the gap" between the two models completely, the experiences and insights shared here will be beneficial for researchers and policy makers that are drawing conclusions from the results of China and global scenario studies.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis, National Institute for Environmental Studies, National Development and Reform Commission, Tokyo Institute of Technology
Contributors: Dai, H., Mischke, P., Xie, X., Xie, Y., Masui, T.
Pages: 1355–1373
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Applied Energy
Volume: 162
ISSN (Print): 0306-2619
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.44 SJR 3.162 SNIP 2.765
Web of Science (2017): Impact factor 7.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.011 SNIP 2.61
Web of Science (2016): Impact factor 7.182
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.4 SJR 2.835 SNIP 2.593
Web of Science (2015): Impact factor 5.746
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.93 SJR 3.158 SNIP 3.218
Web of Science (2014): Impact factor 5.613
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.59 SJR 3.06 SNIP 3.346
Web of Science (2013): Impact factor 5.261
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.69 SJR 2.778 SNIP 3.076
Web of Science (2012): Impact factor 4.781
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1