Strongyle egg counts in Standardbred trotters: Are they associated with race performance?
- DTU Orbit (22/12/2018)

Strongyle egg counts in Standardbred trotters: Are they associated with race performance?

Reasons for performing study: Strongyle worm burdens are assumed to subclinically affect equine performance. This assumption appears to be particularly pronounced in the equine racing industry. **Hypothesis:** Race results of Standardbred trotters are negatively affected by high strongyle faecal egg count levels. **Methods:** Faecal samples were obtained from 213 racing Standardbred trotters, aged ≥2 years, and stabled at training facilities of 21 professional trainers with license at racecourses in Denmark. Strongyle egg counts were generated using a McMaster technique. Race results were recorded as the finishing position of the horse (position 1-3 vs. finishing lower) and winning purse. The effect of strongyle egg counts on performance was assessed using regression analyses. **Results:** Strongyle egg counts ranged from 0-3500 with a mean of 319 and a median of 150 eggs/g. Finishing in positions 1-3 was significantly associated with higher egg counts. **Conclusions:** Race performance of the population of professionally trained Danish Standardbred trotters was not negatively affected by higher strongyle faecal egg count levels. Potential relevance: The traditional frequent anthelmintic treatments of racehorses may be inordinate.

General information

State: Published

Organisations: Division of Microbiology and Risk Assessment, National Food Institute, Technical University of Denmark, University of Copenhagen

Contributors: Fog, P., Vigre, H., Nielsen, M. K.

Pages: 89-92

Publication date: 2011

Peer-reviewed: Yes

Publication information

Journal: Equine Veterinary Journal

Volume: 43 Suppl 39

ISSN (Print): 0425-1644

Ratings:

- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 1.72 SJR 0.991 SNIP 1.375
- Web of Science (2017): Impact factor 2.022
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 1.58 SJR 1.092 SNIP 1.216
- Web of Science (2016): Impact factor 2.382
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 1.62 SJR 1.122 SNIP 1.343
- Web of Science (2015): Impact factor 2.475
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 1.68 SJR 1.116 SNIP 1.395
- Web of Science (2014): Impact factor 2.374
- BFI (2013): BFI-level 2
- Scopus rating (2013): CiteScore 1.96 SJR 1.375 SNIP 1.509
- Web of Science (2013): Impact factor 2.369
- ISI indexed (2013): ISI indexed yes
- BFI (2012): BFI-level 2
- Scopus rating (2012): CiteScore 1.91 SJR 1.114 SNIP 1.269
- Web of Science (2012): Impact factor 2.286
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 2
- Scopus rating (2011): CiteScore 1.34 SJR 0.872 SNIP 0.919
- Web of Science (2011): Impact factor 1.456
- ISI indexed (2011): ISI indexed yes
- Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.991 SNIP 1.403
Web of Science (2010): Impact factor 1.799
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.041 SNIP 1.153
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.799 SNIP 1.036
Scopus rating (2007): SJR 1.023 SNIP 1.018
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.196 SNIP 1.623
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.073 SNIP 1.519
Scopus rating (2004): SJR 0.774 SNIP 1.222
Scopus rating (2003): SJR 0.929 SNIP 1.245
Scopus rating (2002): SJR 0.633 SNIP 1.296
Scopus rating (2001): SJR 0.534 SNIP 1.308
Scopus rating (2000): SJR 0.935 SNIP 0.95
Scopus rating (1999): SJR 0.98 SNIP 1.188
Original language: English
DOIs:
10.1111/j.2042-3306.2011.00381.x
Source: orbit
Source-ID: 280144
Research output: Research - peer-review › Journal article – Annual report year: 2011