Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records - DTU Orbit (03/01/2019)

Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records

Horizontal ice-core sites, where ancient ice is exposed at the glacier surface, offer unique opportunities for paleo-studies of trace components requiring large sample volumes. Following previous work at the Pakitsoq ice margin in West Greenland, we use a combination of geochemical parameters measured in the ice matrix (delta O-18(ice)) and air occlusions (delta O-18(atm), delta N-15 of N-2 and methane concentration) to date ice layers from specific climatic intervals. The data presented here expand our understanding of the stratigraphy and three-dimensional structure of ice layers outcropping at Pakitsoq. Sections containing ice from every distinct climatic interval during Termination I, including Last Glacial Maximum, Bolling/Allerod, Younger Dryas and the early Holocene, are identified. In the early Holocene, we find evidence for climatic fluctuations similar to signals found in deep ice cores from Greenland. A second glacial-interglacial transition exposed at the extreme margin of the ice is identified as another outcrop of Termination I (rather than the onset of the Eemian interglacial as postulated in earlier work). Consequently, the main structural feature at Pakitsoq is a large-scale anticline with accordion-type folding in both exposed sequences of the glacial-Holocene transition, leading to multiple layer duplications and age reversals.

General information
State: Published
Organisations: National Space Institute
Pages: 411-421
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Journal of Glaciology
Volume: 55
Issue number: 191
ISSN (Print): 0022-1430
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.25 SJR 1.929 SNIP 1.167
Web of Science (2017): Impact factor 3.2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.57 SJR 2.118 SNIP 1.257
Web of Science (2016): Impact factor 3.643
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.09 SJR 2.211 SNIP 1.074
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.09 SJR 2.067 SNIP 1.269
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.02 SJR 2.284 SNIP 1.141
Web of Science (2013): Impact factor 3.213
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.79 SJR 2.241 SNIP 1.192
Web of Science (2012): Impact factor 2.882
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.64 SJR 1.792 SNIP 1.216