Hyperdislocations in van der Waals Layered Materials

Dislocations are one-dimensional line defects in three-dimensional crystals or periodic structures. It is common that the dislocation networks made of interactive dislocations be generated during plastic deformation. In van der Waals layered materials, the highly anisotropic nature facilitates the formation of such dislocation networks, which is critical for the friction or exfoliation behavior for these materials. By transmission electron microscopy analysis, we found the topological defects in such dislocation networks can be perfectly rationalized in the framework of traditional dislocation theory, which we applied the name "hyperdislocations". Due to the strong pinning effect of hyperdislocations, the state of exfoliation can be easily triggered by 1° twisting between two layers, which also explains the origin of disregistry and frictionlessness for all of the superlubricants that are widely used for friction reduction and wear protection.

General information
State: Published
Organisations: Sungkyunkwan University, Xiamen University of Technology, Huaiyin Normal University
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Nano Letters
ISSN (Print): 1530-6984
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 13.07
Web of Science (2017): Impact factor 12.08
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.4
Web of Science (2016): Impact factor 12.712
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 14.76
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 14.04
Web of Science (2014): Impact factor 13.592
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 14.23
Web of Science (2013): Impact factor 12.94
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 13.78
Web of Science (2012): Impact factor 13.025
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 13.83
Web of Science (2011): Impact factor 13.198
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Web of Science (2010): Impact factor 12.219