Hydrogen adsorption on palladium and palladium hydride at 1 bar

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

The dissociative sticking probability for H-2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H-D exchange reaction at 1 bar. The sticking probability for H-2, S. is higher on Pd hydride than on Pd (a factor of 1.4 at 140 degrees C), but the apparent desorption energy derived from S is the same on Pd and Pd hydride within the uncertainty of the experiment. Density Functional Theory (DFT) calculations for the (111) surfaces of Pd and Pd hydride show that, at a surface H coverage of a full mono layer, H binds less strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused by a slightly lower equilibrium coverage of H, which is a consequence of the lower heat of adsorption for H on Pd hydride.
Original languageEnglish
JournalSurface Science
Publication date2010
Volume604
Issue7-8
Pages718-729
ISSN0039-6028
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 21

Keywords

  • Polycrystalline, Adsorption, OFT, Hydrogen, Palladium
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5145110