Hydration shells exchange charge with their protein

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells. In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity of the fluorescence background of the Raman spectrum with a typical relaxation time of 30–45 min. Second, we detect changes in the vibrational Raman spectra. To clarify these results we conducted similar experiments with aqueous solutions of amino acids and ethanol. These experiments led us to conclude that, without the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off.
Original languageEnglish
JournalJournal of Physics: Condensed Matter
Publication date2010
Volume22
Issue36
Pages365102
ISSN0953-8984
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 0

Keywords

  • Materials and energy storage, Superconducting materials
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4998752