The swapping of methane with carbon dioxide in hydrate has been proposed as a potential strategy for geologic sequestration of carbon dioxide and production of methane from natural hydrate deposits. However, this strategy requires a better understanding of the thermodynamic characteristics of CH4 and CO2 hydrate as well as (CH4 + CO2) or (CH4 + CO2 + N2) mixed hydrates (since (CO2 + N2) gas mixture is often used as the swapping gas), along with the thermal physics property changes during gas exchange. In this study, a high pressure micro-differential scanning calorimetry (HP μ-DSC) was performed on synthesized gas hydrates to investigate the dissociation behavior of various hydrates. The hydrate dissociation enthalpies were determined by both μ-DSC measurement and Clapeyron equation. For the single guest molecule hydrate system, the average dissociation enthalpies of CH4 hydrate and CO2 hydrate measured by integrating the endothermic peak area are 55.01 kJ·mol⁻¹ and 58.96 kJ·mol⁻¹, respectively, which are very close to the values calculated by Clapeyron equation. However, in the multicomponent guest hydrates system, the μ-DSC measured dissociation enthalpies of the (CH4 + CO2) binary hydrates and (CH4 + CO2 + N2) ternary hydrates are a little higher than that of Clapeyron equation, it was found that their dissociation enthalpies are located between the limiting values of pure CH4 hydrate and CO2 hydrate, increasing with the mole fraction of CO2 in hydrate phase. By monitoring the heat flow changes with the μ-DSC apparatus, it was observed that there was no noticeable dissociation or reformation process of hydrate occurring in the CH4 − CO2/(CO2 + N2) swapping, which indicates that most CH4 hydrate forms (CH4 + CO2) or (CH4 + CO2 + N2) mixed hydrates directly instead of dissociating into liquid water or ice first. The dissociation equilibrium data obtained from the endothermic thermograms of the mixed hydrates after CO2 and (CO2 + N2) swapping demonstrates that about 66% and 85% of CH4 in hydrate phase are replaced, respectively.

General information

State: Published
Organisations: Department of Chemical and Biochemical Engineering, CERE – Center for Energy Resources Engineering
Contributors: Mu, L., von Solms, N.
Pages: 33-42
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Journal of Chemical Thermodynamics
Volume: 117
ISSN (Print): 0021-9614
Ratings:
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 2.58 SJR 1.067 SNIP 1.111
- Web of Science (2017): Impact factor 2.631
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 2.64 SJR 0.972 SNIP 1.17
- Web of Science (2016): Impact factor 2.726
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 2.29 SJR 1.059 SNIP 1.08
- Web of Science (2015): Impact factor 2.196
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 2.59 SJR 1.216 SNIP 1.295
- Web of Science (2014): Impact factor 2.679
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 2.42 SJR 1.244 SNIP 1.244
- Web of Science (2013): Impact factor 2.423
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
Original language: English
Keywords: Clapeyron equation, DSC endothermic thermograms, Hydrate dissociation enthalpy, Methane-carbon dioxide swapping, Phase equilibrium

DOIs:
10.1016/j.jct.2017.08.018
Source: FindIt
Source-ID: 2373551595
Research output: Research - peer-review › Journal article – Annual report year: 2018