Hybrid localized waves supported by resonant anisotropic metasurfaces

We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.

General information
State: Published
Organisations: Department of Photonics Engineering, Plasmonics and Metamaterials, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO)
Contributors: Bogdanov, A. A., Yermakov, O. Y., Ovcharenko, A. I., Song, M., Baranov, D. A., Sinev, I. S., Mukhin, I. S., Samusev, A. K., Iorsh, I. V., Lavrinenko, A., Kivshar, Y. S.
Number of pages: 2
Publication date: 2016

Host publication information
Title of host publication: Proceedings of 2016 Conference on Lasers and Electro-optics
Publisher: Optical Society of America OSA
Article number: FM3D.6
ISBN (Print): 978-1-943580-11-8
(2016 Conference on Lasers and Electro-optics (cleo)).
Keywords: Optical surface waves, Surface waves, Resonant frequency, Tensile stress, Plasmons, Conductivity, Optical device fabrication
DOIs: 10.1364/CLEO_QELS.2016.FM3D.6

Bibliographical note
From the session: Light Localization (FM3D)
Source: FindIt
Source-ID: 2350001131
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016