Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exhibited average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Heidelberg University
Contributors: Mendes, A. C. L., Gorzelanny, C., Halter, N., Schneider, S. W., Chronakis, I. S.
Number of pages: 9
Pages: 48-56
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: International Journal of Pharmaceutics
Volume: 510
Issue number: 1
ISSN (Print): 0378-5173
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.06 SJR 1.172 SNIP 1.27
Web of Science (2017): Impact factor 3.862
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.24 SJR 1.323 SNIP 1.386
Web of Science (2016): Impact factor 3.649
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.2 SJR 1.298 SNIP 1.45
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.13 SJR 1.347 SNIP 1.551
Web of Science (2014): Impact factor 3.65
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.17 SJR 1.377 SNIP 1.605
Web of Science (2013): Impact factor 3.785
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.1 SJR 1.552 SNIP 1.637
Web of Science (2012): Impact factor 3.458
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.01 SJR 1.493 SNIP 1.619
Web of Science (2011): Impact factor 3.35
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.574 SNIP 1.608
Web of Science (2010): Impact factor 3.607
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.399 SNIP 1.53
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.227 SNIP 1.575
Scopus rating (2007): SJR 1.186 SNIP 1.527
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.995 SNIP 1.398
Scopus rating (2005): SJR 1.043 SNIP 1.589
Scopus rating (2004): SJR 1.045 SNIP 1.464
Scopus rating (2003): SJR 0.981 SNIP 1.355
Scopus rating (2002): SJR 0.793 SNIP 1.265
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.74 SNIP 1.047
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.703 SNIP 1.05
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.616 SNIP 0.978
Original language: English
Keywords: Electrospinning, Nanofibers, Transdermal drug delivery, Chitosan, Phospholipids, Pharmaceutical Science
DOIs: 10.1016/j.ijpharm.2016.06.016
Source: FindIt
Source-ID: 2305491911
Research output: Research - peer-review › Journal article – Annual report year: 2016