Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Integrative Systems Biology, Immunoinformatics and Machine Learning, Statens Serum Institut, Carlsberg Research Center
Contributors: Trier, N., Gonzalez-Izarzugaza, J. M., Chailyan, A., Marcatili, P., Houen, G.
Number of pages: 18
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: International Journal of Molecular Sciences (Online)
Volume: 19
Issue number: 1
Article number: 317
ISSN (Print): 1661-6596
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.86 SJR 1.26 SNIP 1.124
Web of Science (2017): Impact factor 3.687
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.73 SJR 1.235 SNIP 1.15
Web of Science (2016): Impact factor 3.226
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.37 SJR 1.157 SNIP 1.118
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.06 SJR 0.991 SNIP 1.143
Web of Science (2014): Impact factor 2.862
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.83 SJR 0.769 SNIP 1.103
Web of Science (2013): Impact factor 2.339
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.86 SJR 0.77 SNIP 1.195
Web of Science (2012): Impact factor 2.464
EBV and Gp42: Links to Rheumatoid Arthritis and Shared Epitope

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease of the joints that can lead to permanent damage and disability. The etiology of RA is complex and includes genetic, environmental, and immunological factors. The shared epitope (SE) is a genetic marker associated with susceptibility to RA in several populations. The EBV-Gp42 complex has been proposed as a potential antigen that could contribute to the pathogenesis of RA. In this review, we explore the evidence linking EBV and Gp42 to RA, focusing on the role of the SE in the regulation of EBV-Gp42 expression and the potential mechanisms by which EBV-Gp42 might contribute to RA. We also discuss the implications of these findings for the development of therapeutic strategies for RA.

Keywords: Epstein-Barr virus, Glycoprotein 42, Rheumatoid arthritis, Shared epitope

Electronic versions:
ijms_19_00317.pdf

DOI:
10.3390/ijms19010317

Bibliographical note
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Source: PublicationPreSubmission
Source-ID: 142848567
Research output: Research - peer-review ; Journal article – Annual report year: 2018