How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology - DTU Orbit (23/10/2018)

How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology

The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice of sharing principle had the greatest influence on the outcome. We therefore highlight the need for more research on the development and choice of sharing principles. Although further work is required to operationalize Planetary Boundaries in LCA, this study shows the potential to relate impacts of human activities to environmental boundaries using LCA, offering company and policy decision-makers information needed to promote environmental sustainability.

General information
State: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, Unilever
Contributors: Ryberg, M. W., Owsianiak, M., Clavreul, J., Mueller, C., Sim, S., King, H., Hauschild, M. Z.
Number of pages: 11
Pages: 1406-1416
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Science of the Total Environment
Volume: 634
ISSN (Print): 0048-9697
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.98 SJR 1.546 SNIP 1.65
Web of Science (2017): Impact factor 4.61
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.09 SJR 1.652 SNIP 1.856
Web of Science (2016): Impact factor 4.9
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.33 SJR 1.653 SNIP 1.648
Web of Science (2015): Impact factor 3.976
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.2 SJR 1.635 SNIP 1.843
Web of Science (2014): Impact factor 4.099
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.73 SJR 1.527 SNIP 1.745
Web of Science (2013): Impact factor 3.163
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.7 SJR 1.749 SNIP 1.82
Web of Science (2012): Impact factor 3.258
ISI indexed (2012): ISI indexed yes