How histological features of basal cell carcinomas influence image quality in optical coherence tomography - DTU Orbit (13/12/2018)

How histological features of basal cell carcinomas influence image quality in optical coherence tomography

Optical coherence tomography (OCT) has the potential to diagnose and measure the depth of nonmelanoma skin cancer (NMSC) in skin, but some lesions appear blurred in OCT images. The aim of this study is to identify histological characteristics of basal cell carcinomas (BCC) that correlate with good quality OCT images of the same lesions. A total of 34 patients with BCC were OCT scanned. The influence of histology parameters (e.g. inflammation, sun damage of skin, carcinoma cell size) on OCT image quality was studied by comparing 15 BCC lesions easily identified compared to 19 BCC lesions that produced only blurred in OCT images. Inflammation was more pronounced in blurred OCT images, whereas solar elastosis dominated in easily identified lesions. Hyperkeratosis did not impair imaging significantly. OCT image quality of BCC may depend on specific histology parameters.

General information

State: Published
Organisations: Terahertz Technologies and Biophotonics, Department of Photonics Engineering, University of Copenhagen
Contributors: Mogensen, M., Nürnberg, B. M., Thrane, L., Jørgensen, T. M., Andersen, P. E., Jemec, G. B. E.
Pages: 544-551
Publication date: 2011
Peer-reviewed: Yes

Publication information

Journal: Journal of Biophotonics
Volume: 4
Issue number: 7-8
ISSN (Print): 1864-063X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.27 SJR 1.028 SNIP 1.212
Web of Science (2017): Impact factor 3.768
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.72 SJR 1.295 SNIP 1.199
Web of Science (2016): Impact factor 4.328
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.23 SJR 1.095 SNIP 1.203
Web of Science (2015): Impact factor 3.818
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.13 SJR 1.114 SNIP 1.212
Web of Science (2014): Impact factor 4.447
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.38 SJR 1.235 SNIP 1.376
Web of Science (2013): Impact factor 3.856
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.88 SJR 1.172 SNIP 1.354
Web of Science (2012): Impact factor 3.099
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.3 SJR 1.468 SNIP 1.777
Web of Science (2011): Impact factor 4.343
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1