High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays - DTU Orbit (24/05/2017)

High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens. In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes at the functional sites of toxins was observed. With these results, high-density peptide microarray technology is for the first time introduced in the field of toxinology and molecular details of the evolution of antibody-toxin interactions based on molecular recognition of distinctive toxic motifs are elucidated.

General information
State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, Network Engineering of Eukaryotic Cell Factories, Roche NimbleGen, Universidad de Costa Rica
Number of pages: 14
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Scientific Reports
Volume: 6
Article number: 36629
ISSN (Print): 2045-2322
Ratings:
BFI (2017): BFI-level 1
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 2.073 SNIP 1.589
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.037 SNIP 1.478
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.829 SNIP 1.466
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.443 SNIP 0.886
ISI indexed (2012): ISI indexed yes
ISI indexed (2011): ISI indexed no
Original language: English
Antibody therapy, High-throughput screening, Immunization, Molecular evolution, Molecular medicine
Electronic versions:
High_throughput_immuno_profiling_of_mamba_Dendroaspis_venom_toxin_epitopes_using_high_density_peptide_microarrays.pdf
DOIs:
10.1038/srep36629

Bibliographical note
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Publication: Research - peer-review | Journal article – Annual report year: 2016