High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Not written here

Documents

DOI

  • Author: Ngo Van, Nong

    Department of Physics, National Changhua University of Education, Changhua 500007, Taiwan, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, 4000 Roskilde, Denmark

View graph of relations

Misfit-layered oxides Ca3−xLnxCo4O9+ with Ln = Dy, Er, Ho, and Lu were synthesized using solid state reactions. The resulting samples were hot-pressed (HP) at 1123K in air for 2 h under a uniaxial pressure of 60 MPa. Thermoelectric properties of Ca3−xLnxCo4O9+ı were investigated up to 1200 K. Both the Seebeck coefficient and electrical resistivity increase upon Ln substitution for Ca. Among the Ln-doped samples, the magnitude of Seebeck coefficient tends to increase with decreasing ionic radius of Ln3+. The Ln-doped samples exhibit a lower thermal conductivity than the non-doped one due to a decrease of their lattice thermal conductivity. The dimensionless figure of merit, ZT, reaches 0.36 at 1073K for the Ca2.8Lu0.2Co4O9+ sample, which is about 1.6 times larger than that for the non-doped counterpart.
Keyword: Thermoelectric materials; Oxide materials; Solid state reactions; Thermoelectrics
Original languageEnglish
JournalJournal of Alloys and Compounds
Publication date2011
Volume509
Pages977-981
ISSN0925-8388
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 37
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5428818