High-temperature Thermoelectric Properties of Ca$_{0.9}$Y$_{0.1}$Mn$_{1-x}$Fe$_x$O$_3$ (0 ≤ x ≤ 0.25) - DTU Orbit (26/02/2019)

Polycrystalline compounds of Ca$_{0.9}$Y$_{0.1}$Mn$_{1-x}$Fe$_x$O$_3$ for 0 ≤ x ≤ 0.25 were prepared by solid-state reaction, followed by spark plasma sintering process, and their thermoelectric properties from 300 to 1200 K were systematically investigated in terms of Y and Fe co-doping at the Ca- and Mn-sites, respectively. Crystal structure refinement revealed that all the investigated samples have the O'-type orthorhombic structure, and the lattice parameters slightly increased with increasing Fe concentration, causing a crystal distortion. It was found that with increasing the content of Fe doping, the Seebeck coefficient of Ca$_{0.9}$Y$_{0.1}$Mn$_{12}$Fe$_x$O$_3$ tended to increase, while the tendency toward the electrical conductivity was more complicated. The highest power factor was found to be 2.19 10^{-4} W/mK² at 1150 K for the sample with x = 0.05 after annealing at 1523 K for 24 h in air. Thermal conductivity of the Fe-doped samples showed a lower value than that of the x = 0 sample, and the highest dimensionless figure of merit, ZT was found to be improved about 20 % for the sample with x = 0.05 as compared to that of the x = 0 sample at 1150 K.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, Functional organic materials, Management, Hanoi University of Science and Technology, Aarhus University
Pages: 2817-2822
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Materials Science
Volume: 48
Issue number: 7
ISSN (Print): 0022-2461
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.83 SJR 0.807 SNIP 1.064
Web of Science (2017): Impact factor 2.993
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.49 SJR 0.769 SNIP 1.072
Web of Science (2016): Impact factor 2.599
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.36 SJR 0.792 SNIP 1.059
Web of Science (2015): Impact factor 2.302
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.54 SJR 0.963 SNIP 1.388
Web of Science (2014): Impact factor 2.371
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.36 SJR 0.926 SNIP 1.451
Web of Science (2013): Impact factor 2.305
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.2 SJR 0.988 SNIP 1.383
Web of Science (2012): Impact factor 2.163