High-pressure viscosity behavior of $x\,1,1,1,2$-tetrafluoroethane (HFC-134a)+(1-x) triethylene glycol dimethylether (TriEGDME) mixtures: Measurements and modeling - DTU Orbit (12/02/2019)

High-pressure viscosity behavior of $x\,1,1,1,2$-tetrafluoroethane (HFC-134a)+(1-x) triethylene glycol dimethylether (TriEGDME) mixtures: Measurements and modeling

In this work new dynamic viscosity measurements for binary mixtures containing a refrigerant (HFC-134a, CF₃CH₂F) and a lubricant (TriEGDME, CH₃O(CH₂OCH₂)₃CH₃) are reported. The measurements were carried out at temperatures between 293.15 and 373.15 K and pressures from 10 to 100 MPa, for two mole fractions x(HFC) = 0.3427 and 0.5940 (a total of 100 experimental values). Since lubricants and refrigerants are in two different thermodynamic states at atmospheric pressure and ambient temperature, an especially designed falling-body viscometer has been used to perform the measurements. The data obtained for this binary system have been used to test the ability of several viscosity models having different origins and theoretical backgrounds. The considered models range from simple mixing rules, through empirical correlations, such as the self-referencing model and the LBC model, to recent approaches with a physical and theoretical background, such as the hard-sphere scheme, the free-volume model, and the friction theory.

General information
State: Published
Organisations: Center for Phase Equilibria and Separation Processes, Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering
Contributors: Monsalvo, M. A., Baylaucq, A., Cisneros, S., Boned, C.
Pages: 70-79
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Fluid Phase Equilibria
Volume: 247
Issue number: 1-2
ISSN (Print): 0378-3812
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.22 SJR 0.95 SNIP 1.033
Web of Science (2017): Impact factor 2.197
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.33 SJR 0.85 SNIP 1.187
Web of Science (2016): Impact factor 2.473
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.99 SJR 0.866 SNIP 0.998
Web of Science (2015): Impact factor 1.846
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.28 SJR 0.981 SNIP 1.232
Web of Science (2014): Impact factor 2.2
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.31 SJR 1.001 SNIP 1.277
Web of Science (2013): Impact factor 2.241
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.31 SJR 1.151 SNIP 1.279
Web of Science (2012): Impact factor 2.379
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.26 SJR 1.03 SNIP 1.235
Web of Science (2011): Impact factor 2.139
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.986 SNIP 1.308
Web of Science (2010): Impact factor 2.253
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.138 SNIP 1.153
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.229 SNIP 1.081
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.034 SNIP 1.153
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.022 SNIP 1.249
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.016 SNIP 1.289
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.984 SNIP 1.343
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.203 SNIP 1.294
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.64 SNIP 1.106
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.956 SNIP 1.287
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.994 SNIP 0.931
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.902 SNIP 0.887

Original language: English
Keywords: measurements, viscosity, modeling, lubricants, refrigerants
DOIs:
10.1016/j.fluid.2006.06.015
Source: orbit
Source-ID: 198261

Research output: Research - peer-review › Journal article – Annual report year: 2006