The thin film transistor characteristics of a soluble molecular semiconductor, terrylene tetracarboxdiimide (TDI), a homologue of perylene tetracarboxdiimide (PDI), have been investigated. In a bottom-gate device structure with benzocyclobutene gate dielectric, n-type behavior with electron mobility of 1.1×10^{-2} cm2 V$^{-1}$ s$^{-1}$ has been observed after thermal annealing. When applied in the top-gate structure with a polycyclohexylethylene-based gate dielectric, TDI devices exhibit ambipolar transport with electron and hole mobility of 7.2×10^{-3} cm2 V$^{-1}$ s$^{-1}$ and 2.2×10^{-3} cm2 V$^{-1}$ s$^{-1}$ respectively. The correlation between morphology and field-effect mobility was investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD) studies. Spin-coated, annealed TDI film crystallize in a terrace structure, and the molecules are packed in an “edge-on” structure, thus forming a favorable packing arrangement for charge transport in the plane of the film.

General information
State: Published
Organisations: Rise National Laboratory for Sustainable Energy, Polymer Department, University of Cambridge, Max Planck Institute, Energy research Centre of the Netherlands - ECN, Nanjing University, University of Copenhagen
Contributors: Liu, C., Liu, Z., Lemke, H. T., Tsao, H. N., Naber, R. C., Li, Y., Banger, K., Müllen, K., Nielsen, M. M., Sirringhaus, H.
Pages: 2120-2124
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Chemistry of Materials
Volume: 22
Issue number: 6
ISSN (Print): 0897-4756
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 9.74 SJR 4.675 SNIP 1.896
Web of Science (2017): Impact factor 9.89
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.89 SJR 4.136 SNIP 1.883
Web of Science (2016): Impact factor 9.466
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.38 SJR 3.958 SNIP 2.061
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.89 SJR 3.595 SNIP 2.222
Web of Science (2014): Impact factor 8.354
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 8.94 SJR 3.666 SNIP 2.267
Web of Science (2013): Impact factor 8.535
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 8.1 SJR 4.181 SNIP 2.247
Web of Science (2012): Impact factor 8.238
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 7.38 SJR 3.488 SNIP 2.118
Web of Science (2011): Impact factor 7.286
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.279 SNIP 1.837
Web of Science (2010): Impact factor 6.4
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.698 SNIP 1.761
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.892 SNIP 1.836
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.11 SNIP 1.845
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.198 SNIP 1.946
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.787 SNIP 1.946
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.526 SNIP 1.996
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.688 SNIP 1.924
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.514 SNIP 1.873
Scopus rating (2001): SJR 2.354 SNIP 1.87
Scopus rating (2000): SJR 1.997 SNIP 1.635
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.148 SNIP 1.736

Original language: English
Keywords: Biopolymers, Solar energy
DOIs:
10.1021/cm902925g
Source: orbit
Source-ID: 259763
Research output: Research - peer-review › Journal article – Annual report year: 2010