Highly Subwavelength, Superdirective Cylindrical Nanoantenna

Research output: Research - peer-reviewJournal article – Annual report year: 2018

Documents

DOI

View graph of relations

A superdirective cylindrical nanoantenna is demonstrated with a multilayered cylindrical metamaterial-inspired structure. Targeting specific scattering coefficients for the dipole and higher-order modes, the ideal limit of needle radiation is demonstrated. A five-layer system is optimized to demonstrate its approach to the theoretical directivity bound. While the resulting structure is scalable to any frequency regime, its highly subwavelength overall size (λ0/10) takes advantage of combinations of positive and negative permittivity materials in the optical regime.
Original languageEnglish
JournalPhysical Review Letters
Volume120
Issue number23
Pages (from-to)237401
Number of pages1
ISSN0031-9007
DOIs
StatePublished - 2018

Bibliographical note

© 2018 American Physical Society. High Energy Physics (HEP) papers published after January 1, 2018 in Physical Review Letters, Physical Review C, and Physical Review D are published open access, paid for centrally by SCOAP3. Library subscriptions will be modified accordingly. This arrangement will initially last for two years, up to the end of 2019.

CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 149876188