View graph of relations

We present both experimental measurements and simulations for a simple fiber-optical liquid refractive index sensor, made using only commercially available components and without advanced postprocessing of the fiber. Despite the simplicity, we obtain the highest sensitivity experimentally demonstrated to date for aqueous solutions (refractive index around 1.33), which is relevant for extensions to biosensing. The sensor is based on measuring the spectral shift of peaks arising from four-wave mixing (FWM), when filling the holes of a microstructured fiber with different liquid samples and propagating nanosecond pulses through the silica-core of the fiber. To the best of our knowledge, this is also the first experiment where a liquid is filled into the holes of a solid-core microstructured fiber to control the phase-match conditions for FWM. (C) 2011 Optical Society of America
Original languageEnglish
JournalOptics Express
Issue number11
Pages (from-to)10471-10484
StatePublished - 2011

Bibliographical note

This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

CitationsWeb of Science® Times Cited: 36


  • Microstructured fibers, Nonlinear optics, Photonic crystal fibers
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 5602371