Highly Conformal Ni Micromesh as a Current Collecting Front Electrode for Reduced Cost Si Solar Cell

Publication: Research - peer-reviewJournal article – Annual report year: 2017

DOI

View graph of relations

Despite relatively high manufacturing cost, crystalline-Si solar cell continues to hold promising future due to its high energy conversion efficiency and long life. As regards cost, one pertinent issue is the top electrode metallization of textured cell surface, which typically involves screen printing of silver paste. The associated disadvantages call for alternative methods that can lower the cost without compromising the solar cell efficiency. In the present work, a highly interconnected one-dimensional (1D) metal wire network has been employed as front electrode on conventional Si wafers. Here, for the first time, we report an innovative solution based crackle templating method for conformal metal wire network patterning over large textured surfaces. Laser beam induced current mapping showed uniform photocurrent collection by the electrodes without any shadow losses. With electroless deposition of Ni wire network on corrugated solar cell, a short circuit current of 33.28 mA/cm2 was obtained in comparison to 20.53 mA/cm2 without the network electrode. On comparing the efficiency with the conventional cells with screen printed electrodes, a 20% increment in efficiency has been observed. Importantly, the estimated manufacturing cost is at least two orders lower.
Original languageEnglish
JournalA C S Applied Materials and Interfaces
Volume9
Issue number10
Pages (from-to)8634-8640
ISSN1944-8244
DOIs
StatePublished - 2017
CitationsWeb of Science® Times Cited: 2

    Keywords

  • Si solar cell, Crackle lithography, Photovoltaics, Solution process, Top contact metallization
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 130696309