Highly Anisotropic Glassy Polystyrenes Are Flexible

Research output: Research - peer-reviewJournal article – Annual report year: 2018

View graph of relations

We show that stretching polystyrene melts at a rate faster than the inverse Rouse time, followed by rapid quenching below the glass transition temperature, results in a material that is flexible and remains so for at least six months. Oriented micro/nanofibers are observed in the flexible samples after the mechanical tests. The fibers are probably related to the highly aligned molecules in melt stretching. At room temperature, a tensile strength over 300 MPa has been achieved for the flexible polystyrenes.
Original languageEnglish
JournalA C S Macro Letters
Volume7
Pages (from-to)1126-1130
ISSN2161-1653
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 152964707