High-fat feeding induces mobilization of vitamin C in obese prone rats - DTU Orbit (22/12/2018)

High-fat feeding induces mobilization of vitamin C in obese prone rats

In obesity and dyslipidemia, hydrolysis of triacylglycerol (TAG) into non-esterified fatty acids (NEFAs) may contribute to insulin resistance, and production of oxygenated, bioactive polyunsaturated fatty acids may increase oxidative stress. Here we show that after six weeks of high-fat feeding of obese prone rats (Crl:OP(CD), vitamin C was increased both in liver (P<0.01) and plasma (P<0.001), while both TAG (P<0.01) and NEFA (P<0.001) were lower than in low-fat fed control rats. Hepatic vitamin C biosynthesis was similar between groups, indicating that a new steady state level was established with a higher vitamin C level adequate for supplying the systemic needs. Glucose and insulin sensitivity were unaffected at this stage. Eventually, the mobilization of vitamin C may be seen as a mechanism to protect the host against insulin resistance.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, University of Copenhagen
Contributors: Tranberg, B., Hellgren, L., Lykkesfeldt, J., Hansen, A.
Pages: 167-169
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Research in Veterinary Science
Volume: 119
ISSN (Print): 0034-5288
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.82 SJR 0.593 SNIP 0.941
Web of Science (2017): Impact factor 1.616
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.46 SJR 0.646 SNIP 0.779
Web of Science (2016): Impact factor 1.298
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.57 SJR 0.774 SNIP 0.933
Web of Science (2015): Impact factor 1.504
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.58 SJR 0.687 SNIP 0.887
Web of Science (2014): Impact factor 1.409
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.62 SJR 0.691 SNIP 0.945
Web of Science (2013): Impact factor 1.511
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.63 SJR 0.633 SNIP 1.067
Web of Science (2012): Impact factor 1.774
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.65 SJR 0.726 SNIP 1.054
Web of Science (2011): Impact factor 1.649
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2