High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

A grating coupler for interfacing between single-mode fibers and photonic circuits on silicon-on-insulator is demonstrated. It consists of columns of fully etched photonic crystal holes, which are made in the same lithography and etching processes used for making the silicon-on-insulator wire waveguide. The holes have a diameter of around 143 nm, and are defined with electron-beam lithography. A peak coupling efficiency of 42% at 1550 nm and 1 dB bandwidth of 37 nm, as well as a low back reflection, are achieved. The performance of the proposed fully etched grating coupler is comparable to that based on the conventional shallowly etched grating, which needs additional fabrication steps.
Original languageEnglish
JournalApplied Physics Letters
Publication date2010
Volume96
Issue5
Pages051126
ISSN0003-6951
DOIs
StatePublished

Bibliographical note

Copyright (2010) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

CitationsWeb of Science® Times Cited: 35
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4865199