High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction

High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction

Polyvalent snakebite antivenoms derive their therapeutic success from the ability of their antibodies to neutralize venom toxins across multiple snake species. This ability results from a production process involving immunization of large mammals with a broad suite of toxins present in venoms. As a result of immunization with this wide range of toxins, many polyvalent antivenoms have a high degree of cross-reactivity to similar toxins in other snake venoms - a cross-reactivity which cannot easily be deconvoluted. As a proof of concept, we aimed at exploring the opposite scenario by performing a high-throughput evaluation of the extent of cross-reactivity of a polyclonal mixture of antibodies that was raised against only a single snake venom fraction. For this purpose, a venom fraction containing short neurotoxin 1 (SN-1; Uniprot accession number P01416, three-finger toxin (3FTx) family), which is the medically most important toxin from the notorious black mamba (Dendroaspis polylepis), was employed. Following immunization of a rabbit, a specific polyclonal antibody response was confirmed by ELISA and immunodiffusion. Subsequently, these antibodies were investigated by high-density peptide microarray to reveal linear elements of recognized epitopes across 742 3FTxs and 10 dendrotoxins. This exploratory study demonstrates in a single immunized animal that cross-reactivity between toxins of high similarity may be difficult to obtain when immunizing with a single 3FTx containing venom fraction. Additionally, this study explored the influence of employing different lengths of peptides in high-density peptide microarray experiments for identification of toxin epitopes. Using 8-mer, 12-mer, and 15-mer peptides, a single linear epitope element was identified in SN-1 with high precision.

General information
State: Published
Organisations: Network Engineering of Eukaryotic Cell factories, Department of Bio and Health Informatics, Genomic Epidemiology, Immunoinformatics and Machine Learning, Department of Biotechnology and Biomedicine, Universidad de Costa Rica
Authors: Engmark, M. (Intern), Jespersen, M. C. (Intern), Lomonte, B. (Ekstern), Lund, O. (Intern), Laustsen, A. H. (Intern)
Pages: 151-158
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Toxicon
Volume: 138
ISSN (Print): 0041-0101
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SJR 0.692 SNIP 0.9 CiteScore 2.4
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.33 SJR 0.766 SNIP 1.047
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.904 SNIP 1.033 CiteScore 2.47
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.972 SNIP 1.101 CiteScore 2.48
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.022 SNIP 1.24 CiteScore 2.9
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.019 SNIP 1.346 CiteScore 2.85
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.908 SNIP 1.059 CiteScore 2.54
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1