High temperature SU-8 pyrolysis for fabrication of carbon electrodes - DTU Orbit (18/01/2019)

High temperature SU-8 pyrolysis for fabrication of carbon electrodes

In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon. Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon.

The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis parameters has small influence on electrochemical performance.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology, Nanocarbon, Department of Applied Mathematics and Computer Science, Cognitive Systems
Pages: 91-99
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Journal of Analytical and Applied Pyrolysis
Volume: 125
ISSN (Print): 0165-2370
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.91 SJR 1.129 SNIP 1.312
Web of Science (2017): Impact factor 3.468
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.11 SJR 1.379 SNIP 1.572
Web of Science (2016): Impact factor 3.471
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.06 SJR 1.489 SNIP 1.635
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.08 SJR 1.691 SNIP 1.954
Web of Science (2014): Impact factor 3.564
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.6 SJR 1.036 SNIP 1.921
Web of Science (2013): Impact factor 3.07
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.26 SJR 1.408 SNIP 1.77
Web of Science (2012): Impact factor 2.56
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.07 SJR 1.388 SNIP 1.603