High purity H2/H2O/Ni/SZ electrodes at 500º C - DTU Orbit (18/01/2019)

High purity H2/H2O/Ni/SZ electrodes at 500º C

The performance of SOFC (solid oxide fuel cell) anodes is influenced negatively by impurities. In the present study segregation of impurities is minimized by using high purity materials at relatively low temperatures to prevent fast segregation. Ni point electrodes on polished single crystals of stabilized zirconia (SZ) with 10, 13 and 18 mol% yttria and one with 6 mol% scandia plus 4 mol% yttria were studied at open circuit voltage at 400-500 C in mixtures of H2/H2O over 46 days. The polarization resistances (Rp) for all samples increased significantly during the first 10-20 days at 500 C. No effect of the electrolyte composition on R p was found. Surface sensitive techniques were used to analyze the composition of the nickel and the electrolytes before and after the electrochemical experiment. Impurities were found to segregate to the surfaces/interfaces, and they are believed to impede the electrode processes and hence to cause the increase in polarization resistance. © 2013 Elsevier B.V.
Scopus rating (2011): CiteScore 2.96 SJR 1.376 SNIP 1.615
Web of Science (2011): Impact factor 2.646
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.46 SNIP 1.498
Web of Science (2010): Impact factor 2.496
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.508 SNIP 1.483
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.515 SNIP 1.617
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.292 SNIP 1.384
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.239 SNIP 1.541
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.093 SNIP 1.423
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.18 SNIP 1.55
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.473 SNIP 1.389
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.253 SNIP 1.36
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.121 SNIP 1.213
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.161 SNIP 1.312
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.08 SNIP 1.254
Original language: English
Keywords: Anodes, Electrodes, Electrolytes, Electrophoretic coatings, Impurities, Open circuit voltage, Solid oxide fuel cells (SOFC), Yttria stabilized zirconia, Yttrium alloys, Zirconia, Segregation (metallography)
DOIs:
10.1016/j.ssi.2012.12.015
Source: dtu
Source-ID: n:oai:DTIC-ART:compendex/379628849::26135
Research output: Research - peer-review / Journal article – Annual report year: 2013