Hexabundles: imaging fiber arrays for low-light astronomical applications

Publication: Research - peer-reviewJournal article – Annual report year: 2011

Documents

DOI

View graph of relations

We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibres at a time fed to multiple spectrographs. But a large fraction of these sources are spatially extended on the celestial sphere such that a hexabundle would be able to provide spectroscopic information at many distinct locations across the source. Our goal is to upgrade single-fibre survey instruments with multimode hexabundles in place of the multimode fibres. We discuss two varieties of hexabundles: (i) closely packed circular cores allowing the covering fraction to approach the theoretical maximum of 91%; (ii) fused noncircular cores where the interstitial holes have been removed and the covering fraction approaches 100%. In both cases, we find that the cladding can be reduced to ~2μm over the short fuse length, well below the conventional ~10λ thickness employed more generally. We discuss the relative merits of fused/unfused hexabundles in terms of manufacture and deployment, and present our first on-sky observations.
Original languageEnglish
JournalOptics Express
Publication date2011
Volume19
Issue3
Pages2649-2661
ISSN1094-4087
DOIs
StatePublished

Bibliographical note

This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-3-2649. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

CitationsWeb of Science® Times Cited: 13
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5508625