Heterogeneity in phage induction enables the survival of the lysogenic population - DTU Orbit (18/02/2019)

Heterogeneity in phage induction enables the survival of the lysogenic population:

Heterogeneity in phage induction enables the survival of the lysogenic population. Lysogeny by temperate phages provides novel functions for bacteria and shelter for phages. However, under conditions that activate the phage lytic cycle, the benefit of lysogeny becomes a paradox that poses a threat for bacterial population survival. Using *Escherichia coli* lysogens for Shiga toxin (Stx) phages as model, we demonstrate how lysogenic bacterial populations circumvent extinction after phage induction. A fraction of cells maintains lysogeny, allowing population survival, whereas the other fraction of cells lyse, increasing Stx production and spreading Stx phages. The uninduced cells were still lysogenic for the Stx phage and equally able to induce phages as the original cells, suggesting heterogeneity of the *E. coli* lysogenic population. The bacterial population can modulate phage induction under stress conditions by the stress regulator RpoS. Cells overexpressing RpoS reduce Stx phage induction and compete with and survive better than cells with baseline RpoS levels. Our observations suggest that population heterogeneity in phage induction could be widespread among other bacterial genera and we propose this is a mechanism positively selected to prevent the extinction of the lysogenic population that can be modulated by environmental conditions.

General information

State: E-pub ahead of print
Organisations: University of Barcelona
Contributors: Imamovic, L., Ballesté, E., Martínez-Castillo, A., García-Aljaro, C., Muniesa, M.
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Environmental Microbiology
ISSN (Print): 1462-2912
Ratings:
- BFI (2019): BFI-level 2
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 4.83 SJR 2.209 SNIP 1.31
- Web of Science (2017): Impact factor 4.974
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 5.02 SJR 2.377 SNIP 1.383
- Web of Science (2016): Impact factor 5.395
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 5.61 SJR 3.02 SNIP 1.571
- Web of Science (2015): Impact factor 5.932
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 5.6 SJR 2.862 SNIP 1.599
- Web of Science (2014): Impact factor 6.201
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 2
- Scopus rating (2013): CiteScore 6.37 SJR 3.273 SNIP 1.823
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 2
- Scopus rating (2012): CiteScore 5.94 SJR 3.165 SNIP 1.639
- Web of Science (2012): Impact factor 5.756
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 6.1 SJR 3.368 SNIP 1.7
Web of Science (2011): Impact factor 5.843
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.775 SNIP 1.551
Web of Science (2010): Impact factor 5.537
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.502 SNIP 1.378
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.495 SNIP 1.322
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.303 SNIP 1.498
Scopus rating (2006): SJR 2.451 SNIP 1.517
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.431 SNIP 1.519
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.08 SNIP 1.239
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.794 SNIP 1.241
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.378 SNIP 1.028
Scopus rating (2001): SJR 1.317 SNIP 1.228
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.075 SNIP 0.859
Web of Science (2000): Indexed yes
Original language: English
DOIs:
10.1111/1462-2920.13151
Source: FindIt
Source-ID: 2289513032
Research output: Research - peer-review › Journal article – Annual report year: 2016