Heralded generation of a micro-macro entangled state

Using different optical setups based on squeezed state and photon subtraction we show how optical entanglement between a macroscopic and a microscopic state—the so-called Schrödinger cat state or micro-macro state—can be generated. The entangled state is heralded and is thus produced a priori in contrast to previous proposals. We define the macroscopicity of the macroscopic part of the state as their mean distance in phase space and the success rate in discriminating them with homodyne detection, and subsequently, based on these measures we investigate the macroscopicity of different states. Furthermore, we show that the state can be used to map a microscopic qubit onto a macroscopic one thereby linking a qubit processor with a qumode processor.

General information
State: Published
Organisations: Department of Physics, Quantum Physics and Information Technology
Contributors: Andersen, U. L., Neergaard-Nielsen, J. S.
Pages: 022337
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Physical Review A
Volume: 88
Issue number: 2
ISSN (Print): 2469-9926
Ratings:
 BFI (2019): BFI-level 1
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 2.46 SJR 1.286 SNIP 0.886
 Web of Science (2017): Impact factor 2.909
 Web of Science (2017): Indexed yes
 Scopus rating (2016): CiteScore 2.25 SJR 1.482 SNIP 0.985
 Web of Science (2016): Impact factor 2.925
 Web of Science (2016): Indexed yes
 Scopus rating (2015): CiteScore 2.06 SJR 1.747 SNIP 1.008
 Web of Science (2015): Impact factor 2.765
 Web of Science (2015): Indexed yes
 Scopus rating (2014): CiteScore 2.46 SJR 2.201 SNIP 1.163
 Web of Science (2014): Indexed yes
 Scopus rating (2013): CiteScore 2.86 SJR 2.305 SNIP 1.166
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 Scopus rating (2012): CiteScore 2.81 SJR 2.519 SNIP 1.231
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 Scopus rating (2011): CiteScore 2.79 SJR 2.316 SNIP 1.252
 ISI indexed (2011): ISI indexed yes
 Web of Science (2011): Indexed yes
 Scopus rating (2010): SJR 2.4 SNIP 1.211
 Web of Science (2010): Indexed yes
 Scopus rating (2009): SJR 2.469 SNIP 1.346
 Web of Science (2009): Indexed yes
 Scopus rating (2008): SJR 2.536 SNIP 1.231
 Web of Science (2008): Indexed yes
 Scopus rating (2007): SJR 2.524 SNIP 1.203
 Web of Science (2007): Indexed yes