Hardening and strengthening behavior in rate-independent strain gradient crystal plasticity

Two rate-independent strain gradient crystal plasticity models, one new and one previously published, are compared and a numerical framework that encompasses both is developed. The model previously published is briefly outlined, while an in-depth description is given for the new, yet somewhat related, model. The difference between the two models is found in the definitions of the plastic work expended in the material and their relation to spatial gradients of plastic strains. The model predictions are highly relevant to the ongoing discussion in the literature, concerning 1) what governs the increase in the apparent yield stress due to strain gradients (also referred to as strengthening)? And 2), what is the implication of such strengthening in relation to crystalline material behavior at the micron scale? The present work characterizes material behavior, and the corresponding plastic slip evolution, by use of the finite element method. The pure shear problem of an infinite material slab is investigated, with the previously published model displaying strengthening, while the new model does not. In addition to the numerical approach an exact closed form solution, to the pure shear problem, is obtained for the new model, and it is demonstrated that the model predicts proportional straining in the entire plastic regime. Somewhat surprising it is found that the predictions for strain gradient hardening coincide for the two models.

General information
State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Authors: Nellemann, C. (Intern), Niordson, C. F. (Intern), Nielsen, K. (Intern)
Pages: 157-168
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information
Volume: 67
ISSN (Print): 0997-7538
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.7 SJR 1.462 SNIP 1.466
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.442 SNIP 1.492 CiteScore 2.56
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.317 SNIP 1.627 CiteScore 2.14
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.647 SNIP 2.129 CiteScore 2.6
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.379 SNIP 1.828 CiteScore 1.92
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.271 SNIP 1.742 CiteScore 1.92
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.251 SNIP 1.696
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.644 SNIP 1.634
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.688 SNIP 1.675
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.407 SNIP 1.58
Web of Science (2007): Indexed yes