Growth potential of exponential- and stationary-phase Salmonella Typhimurium during sausage fermentation

Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential- and stationary-phase Salmonella Typhimurium (DT12 and DTU292) during freezing at −18 °C and their subsequent growth potential during 72 h sausage fermentation at 25 °C. After 0, 7 and > 35 d of frozen storage, sausage batters were prepared with NaCl (3%) and NaNO2 (0, 100 ppm) and fermented with and without starter culture. With no starter culture, both strains grew in both growth phases. In general, a functional starter culture abolished S. Typhimurium growth independent of growth phase and we concluded that ensuring correct fermentation is important for sausage safety. However, despite efficient fermentation, sporadic growth of exponential-phase cells of S. Typhimurium was observed drawing attention to the handling and storage of sausage meat.

General information
State: Published
Organisations: National Food Institute, Research Group for Microbial Food Safety, Technical University of Denmark
Contributors: Birk, T., Henriksen, S., Müller, K., Hansen, T. B., Aabo, S.
Number of pages: 8
Pages: 342-349
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Meat Science
Volume: 121
ISSN (Print): 0309-1740
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.39 SJR 1.643 SNIP 1.9
Web of Science (2017): Impact factor 2.821
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.33 SJR 1.792 SNIP 1.929
Web of Science (2016): Impact factor 3.126
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.04 SJR 1.917 SNIP 1.858
Web of Science (2015): Impact factor 2.801
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.94 SJR 1.482 SNIP 1.876
Web of Science (2014): Impact factor 2.615
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.9 SJR 1.512 SNIP 1.83
Web of Science (2013): Impact factor 2.231
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.84 SJR 1.617 SNIP 1.881
Web of Science (2012): Impact factor 2.754
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.75 SJR 1.769 SNIP 1.788
Web of Science (2011): Impact factor 2.275
ISI indexed (2011): ISI indexed yes