Growth of mussels Mytilus edulis at algal (Rhodomonas salina) concentrations below and above saturation level for reduced filtration rate

Average filtration and growth rates of groups of juvenile Mytilus edulis (n =2545 of 22-35 mm shell length) were measured at different concentrations of an algal cell monoculture in 9 laboratory experiments of duration 14-30 days, 4 experiments below and 5 above the limit of incipient saturation concentration (C_{sat} ≈ 6000-7000 Rhodomonas salina cells ml⁻¹). From a nearly constant filtration rate (F ≈ 30 ml min⁻¹ for a 30 mm shell length) at measured algal concentrations below C_{sat} the steady-state filtration rate decreased approximately as 1/C for increasing algal concentrations (C) above C_{sat} to levels as low as 12-9 % of the former value. Corresponding calculated gross ingestion rates (I = F x C) increased linearly below C_{sat} and remained nearly constant above C_{sat}. However, the measured weight-specific growth rates (μ) decreased sharply above C_{sat}, from a maximal value of about 9.5 % day⁻¹ to about 1.5 % day⁻¹. Below C_{sat} on the other hand, measured μ values increased linearly with increasing algal concentration which was in good agreement with an earlier advanced bioenergetic growth model. The overall functional response of M. edulis resembles a Type I in terms of gross ingestion, but with a rapid decrease instead of a constant above C_{sat} in terms of actual ingestion and growth. The physiological implications of the functional response remain uncertain. The response to increasing food concentration with possible regulation of net ingestion appears only to come into play when C_{sat} is exceeded and then as partial valve closure and reduced filtration and growth rates along with production of pseudofaeces. A survey of naturally occurring phytoplankton biomass in the sea shows that this is generally below C_{sat} except for the short spring bloom periods; hence mussels generally feed at optimal rates depending on the composition and concentration of biomass exceeding the minimal concentration below which the mussels close their valves and reduce or cease filtering.

General information
State: Published
Organisations: Department of Mechanical Engineering, University of Southern Denmark
Pages: 1005-1017
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Marine Biology Research
Volume: 9
Issue number: 10
ISSN (Print): 1745-1000
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.01 SJR 0.467 SNIP 0.488
Web of Science (2017): Impact factor 0.901
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.26 SJR 0.65 SNIP 0.716
Web of Science (2016): Impact factor 1.161
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.45 SJR 0.829 SNIP 0.815
Web of Science (2015): Impact factor 1.649
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.34 SJR 0.67 SNIP 0.843
Web of Science (2014): Impact factor 1.475
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.09 SJR 0.625 SNIP 0.665
Web of Science (2013): Impact factor 1.134
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1