Greenland ice sheet mass balance: a review - DTU Orbit (12/01/2019)

Greenland ice sheet mass balance: a review

Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes.

General information
State: Published
Organisations: National Space Institute, Geodesy, University of Alaska Fairbanks, University of Copenhagen, University of Colorado
Number of pages: 26
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Reports on Progress in Physics
Volume: 78
Issue number: 4
Article number: 046801
ISSN (Print): 0034-4885
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 14.13 SJR 5.64 SNIP 5.438
Web of Science (2017): Impact factor 14.257
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 12.39 SJR 6.927 SNIP 5.772
Web of Science (2016): Impact factor 14.311
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 12.65 SJR 9.324 SNIP 5.911
Web of Science (2015): Impact factor 12.933
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 13.01 SJR 10.39 SNIP 6.404
Web of Science (2014): Impact factor 17.062
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 11.31 SJR 10.509 SNIP 5.72
Web of Science (2013): Impact factor 15.633
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 14.29 SJR 9.175 SNIP 7.395
Web of Science (2011): Impact factor 14.72
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 8.452 SNIP 6.818
BFI (2009): BFI-level 2
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 7.927 SNIP 7.389
Scopus rating (2005): SJR 6.369 SNIP 5.449
Scopus rating (2004): SJR 5.71 SNIP 4.972
Scopus rating (2003): SJR 5.741 SNIP 4.742
Scopus rating (2002): SJR 7.798 SNIP 5.789
Scopus rating (2000): SJR 7.768 SNIP 5.038
Scopus rating (1999): SJR 7.791 SNIP 5.144
Original language: English
Keywords: Remote sensing, Glaciers, Mass balance, Ice-sheet modelling, Greenland ice sheet, Climate change, Sea-level changes
DOI: 10.1088/0034-4885/78/4/046801
Source: FindIt
Source-ID: 274422678
Research output: Research - peer-review › Journal article – Annual report year: 2015