Green corridors in freight logistics

The subject of this thesis is ‘green corridors,’ a European concept denoting a concentration of freight traffic between major hubs and by relatively long distances. Since their inception in 2007, green corridors have gained popularity as a policy tool that enhances the overall environmental sustainability of transport through improving the competitiveness of the railway and waterborne modes that exhibit better environmental characteristics than road haulage.

The thesis has three objectives, all related to green corridors. The first one aims to develop a methodology for the quantitative monitoring of the performance of a green corridor in terms of pre-specified Key Performance Indicators (KPIs). The thesis builds on previous own work under the EU-financed SuperGreen project and applies the new methodology on the GreCOR corridor extending from Oslo to Rotterdam. The scope of the two other objectives relates to environmental indicators viewed in the context of maritime corridors. The second objective seeks to develop a simple and practical framework for classifying the carbon emission reduction measures that have been proposed for the shipping industry, while the third one examines the impacts on modal split and emissions of designating the Mediterranean Sea as a Sulphur Emission Control Area (SECA), where stricter limits on the sulphur content of marine fuels apply.

In relation to the first objective, the thesis reviews the most important EU transport policy documents, discusses the available definitions of green corridors, identifies the characteristics that distinguish a green corridor from any other efficient corridor, and uses these characteristics as criteria to investigate the relation between the so-called ‘core network corridors’ of the trans-European transport network and the green corridor concept. Once the rationale for a performance monitoring scheme has been established, the thesis critically reviews the SuperGreen methodology which consists of: (i) decomposing the corridor into transport chains, (ii) selecting a sample of typical chains, (iii) assessing these chains through a set of KPIs, and (iv) aggregating the chain-level KPIs to corridor-level ones using proper weights. Unlike SuperGreen that suggests a study-based approach for constructing the corridor sample, the thesis proposes founding the selection of typical chains on the outcome of specialised transport models. The periodic collection of stakeholder data on the selected ‘basket’ of transport services would then enable monitoring progress towards meeting the objectives that corridor management has set.