Graphene-Si CMOS oscillators

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

Documents

DOI

View graph of relations

Graphene field-effect transistors (GFETs) offer a possibility of exploiting unique physical properties of graphene in realizing novel electronic circuits. However, graphene circuits often lack the voltage swing and switchability of Si complementary metal-oxide-semiconductor (CMOS) circuits, which are the main building block of modern electronics. Here we introduce graphene in Si CMOS circuits to exploit favorable electronic properties of both technologies and realize a new class of simple oscillators using only a GFET, Si CMOS D latch, and timing RC circuit. The operation of the two types of realized oscillators is based on the ambipolarity of graphene, i.e., the symmetry of the transfer curve of GFETs around the Dirac point. The ambipolarity of graphene also allowed to turn the oscillators into pulse-width modulators (with a duty cycle ratio ∼1 : 4) and voltage-controlled oscillators (with a frequency ratio ∼1 : 8) without any circuit modifications. The oscillation frequency was in the range from 4 kHz to 4 MHz and limited only by the external circuit connections, rather than components themselves. The demonstrated graphene-Si CMOS hybrid circuits pave the way to the more widespread adoption of graphene in electronics.
Original languageEnglish
JournalNanoscale
Volume11
Issue number8
Pages (from-to)3619-3625
Number of pages7
ISSN2040-3364
DOIs
Publication statusPublished - 2019

Bibliographical note

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 167472173