Graphene Conductance Uniformity Mapping

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times of less than a minute for a 4-in. wafer. The combination of M4PP and THz-TDS conductance measurements, supported by micro Raman spectroscopy and optical imaging, reveals that the film is electrically continuous on the nanoscopic scale with microscopic defects likely originating from the transfer process, dominating the microscale conductance of the investigated graphene film.
Original languageEnglish
JournalNano Letters
Publication date2012
Number of pages8
ISSN1530-6984
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 13

Keywords

  • Graphene, Terahertz, Micro four-point probe, Metrology, Imaging, Electrical characterization, Noninvasive characterization, Spectroscopy
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 10731752