Grain boundary-induced variability of charge transport in hydrogenated polycrystalline graphene - DTU Orbit (10/01/2019)

Grain boundary-induced variability of charge transport in hydrogenated polycrystalline graphene

Chemical functionalization has proven to be a promising means of tailoring the unique properties of graphene. For example, hydrogenation can yield a variety of interesting effects, including a metal-insulator transition or the formation of localized magnetic moments. Meanwhile, graphene grown by chemical vapor deposition is the most suitable for large-scale production, but the resulting material tends to be polycrystalline. Up to now there has been relatively little focus on how chemical functionalization, and hydrogenation in particular, impacts the properties of polycrystalline graphene. In this work, we use numerical simulations to study the electrical properties of hydrogenated polycrystalline graphene. We find a strong correlation between the spatial distribution of the hydrogen adsorbates and the charge transport properties. Charge transport is weakly sensitive to hydrogenation when adsorbates are confined to the grain boundaries, while a uniform distribution of hydrogen degrades the electronic mobility. This difference stems from the formation of the hydrogen-induced resonant impurity states, which are inhibited when the honeycomb symmetry is locally broken by the grain boundaries. These findings suggest a tunability of electrical transport of polycrystalline graphene through selective hydrogen functionalization, and also have implications for hydrogen-induced magnetization and spin lifetime of this material.

General information

State: Published
Organisations: Center for Nanostructured Graphene, Department of Micro- and Nanotechnology, Theoretical Nano-electronics, Barcelona Institute of Science and Technology
Contributors: Barrios-Vargas, J. E., Falkenberg, J. T., Soriano, D., Cummings, A. W., Brandbyge, M., Roche, S.
Number of pages: 6
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: 2D materials
Volume: 4
Issue number: 2
Article number: 025009
ISSN (Print): 2053-1583
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.05 SJR 2.813 SNIP 1.072
Web of Science (2017): Impact factor 7.042
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.26 SJR 2.314 SNIP 0.915
Web of Science (2016): Impact factor 6.937
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.89 SJR 4.602 SNIP 1.009
BFI (2014): BFI-level 1
BFI (2013): BFI-level 1
ISI indexed (2013): ISI indexed no
Original language: English
Keywords: Polycrystalline graphene, Grain boundaries, Charge transport, Hydrogenation, Impurity states, Kubo transport, First-principles calculations
Electronic versions:
HdopedGBsites_MB.pdf. Embargo ended: 01/02/2018
DOIs: 10.1088/2053-1583/aa59de
Source: FindIt
Source-ID: 2351287816
Research output: Research - peer-review › Journal article – Annual report year: 2017