GRACAT, Software for grounding and collision analysis

From 1998 to 2001 an integrated software package for grounding and collision analysis was developed at the Technical University of Denmark within the ISESO project at the cost of six man years (0.75M US$). The software provides a toolbox for a multitude of analyses related to collision and grounding accidents. The software consists of three basic analysis modules and one risk mitigation module: 1) frequency, 2) damage, and 3) consequence. These modules can be used individually or in series and the analyses can be performed in deterministic or probabilistic mode. Finally, in the mitigation module risk profiles for the calculated consequences can be calculated and compared to alternative solutions by assignment of a cost function to the consequences. Thus, the possible analyses range from a deterministic crash analysis to a comparative risk analysis of two vessels operating on a specified route where the result is the probability density functions for the cost of oil outflow in a given area per year for the two vessels. In this paper we describe the basic modelling principles and the capabilities of the software package. The software package can be downloaded for research purposes from www.ish.dtu.dk/GRACAT.

General information
State: Published
Organisations: Coastal, Maritime and Structural Engineering, Department of Mechanical Engineering
Contributors: Friis-Hansen, P., Simonsen, B. C.
Pages: 383-402
Publication date: 2002
Peer-reviewed: Yes

Publication information
Journal: Marine Structures
Volume: 15
Issue number: 4-5
ISSN (Print): 0951-8339
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.35 SJR 2.049 SNIP 2.936
Web of Science (2017): Impact factor 2.491
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.49 SJR 1.516 SNIP 2.609
Web of Science (2016): Impact factor 2.052
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.77 SJR 1.641 SNIP 2.449
Web of Science (2015): Impact factor 1.729
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.18 SJR 1.338 SNIP 2.924
Web of Science (2014): Impact factor 1.278
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.42 SJR 1.244 SNIP 2.749
Web of Science (2013): Impact factor 1.242
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.76 SJR 1.756 SNIP 3.319
Web of Science (2012): Impact factor 1.333
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.82 SJR 1.496 SNIP 2.552
Web of Science (2011): Impact factor 0.901