Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy - DTU Orbit (25/12/2018)

Robust, macroscopically uniform, and highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated using wafer-scale block copolymer lithography. The substrate consists of gold nanoparticles that can slide and aggregate on dense and recyclable alumina/silicon nanohoodoos. Hot-spot engineering is conducted to maximize the SERS performance of the substrate. The substrate demonstrates remarkably large surface-averaged SERS enhancements, greater than 10^7 ($>10^8$ in hot spots), with unrivalled macroscopic signal uniformity as characterized by a coefficient of variation of only 8% across 4 cm. After SERS analyses, the nanohoodoos can be recycled by complete removal of gold via a one-step, simple, and robust wet etching process without compromising performance. After eight times of recycling, the substrate still exhibits identical SERS performance in comparison to a new substrate. The macroscopic uniformity combined with recyclability at conserved high performance is expected to contribute significantly on the overall competitiveness of the substrates. These findings show that the gold nanoparticles sliding on recyclable nanohoodoo substrate is a very strong candidate for obtaining cost-effective, high-quality, and reliable SERS spectra, facilitating a wide and simple use of SERS for both laboratorial and commercial applications.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Center for Nanostructured Graphene, Self-Organized Nanoporous Materials, University College London
Contributors: Wu, K., Li, T., Schmidt, M. S., Rindzevicius, T., Boisen, A., Ndoni, S.
Number of pages: 11
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Advanced Functional Materials
Volume: 28
Issue number: 2
Article number: 1704818
ISSN (Print): 1616-301X
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 12.51
Web of Science (2017): Impact factor 13.325
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 11.56
Web of Science (2016): Impact factor 12.124
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 11.93
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 11.32
Web of Science (2014): Impact factor 11.805
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 10.6
Web of Science (2013): Impact factor 10.439
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 10.41
Web of Science (2012): Impact factor 9.765
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 9.47
Web of Science (2011): Impact factor 10.179
ISI indexed (2011): ISI indexed no
Web of Science (2010): Impact factor 8.508
Web of Science (2010): Indexed yes
Web of Science (2009): Indexed yes